PHYSICS REQUIREMENTS FOR ZERO-DEGREE ELECTROMAGNETIC AND HADRONIC CALORIMETRY: SPECTATOR TAGGING IN LIGHT SYSTEMS AND IMPACT PARAMETER TAGGING IN HEAVY SYSTEMS

Joint CFNS & RBRC Workshop:
Physics and Detector Requirements at
Zero-Degree of Colliders
(24-26 September 2019)

CHARLES HYDE

OLD DOMINION UNIVERSITY

PHYSICS NEAR ZERO DEGREES

- Spectator/Fragment tagging in light nuclei.
- DVES on heavy nuclei: (≥ C)
 - The challenge of true exclusivity
- Target Fragmentation in DIS
 - Flavor/ p_T correlations with current fragmentation region
 - Baryon multiplicity as impact parameter tag
- Fission Fragments in both photo- and electro-production
 - Search for exotic nuclei?

HADRONIC CALORIMETRY: I. LIGHT SYSTEMS

- $D(e,e'p_S)X$
 - Proton tracking determines p_T , $\alpha = A \frac{p^+}{P_A^+}$
 - Probe neutron structure function for nearly on-shell neutron
 - Probe EMC effect in the deuteron with strongly off-shell neutron
- D(e,e'n_s)X
 - Calibrate "nearly on-shell neutron" with "nearly on-shell proton"

$D(e,e'n_s)X \approx p_{bound}(e,e')X$ 200 GeV/c D \rightarrow 100 GeV/c spectator neutron

- Hadronic Calorimeter at 45 m (JLEIC)
- Impact point resolution 1.5 cm rms:

•
$$\frac{\delta p_T}{p} = 0.33 \text{ mrad} \Rightarrow \delta p_T = 33 \text{ MeV}$$

- Equivalent to rms beam spread
- If energy Resolution $\frac{\delta E}{E} = \frac{(35\%)}{\sqrt{E/GeV}}$

•
$$\alpha = A \frac{p_n^+}{P_A^+} \approx \left[1 + \frac{p_n}{M_N}\right]_{Deuteron \ Rest-Frame}$$

•
$$\delta \alpha = \frac{\delta E}{E} = 3.5\% \Rightarrow \delta p_n^{D-rest} \approx 35 \text{ MeV/c}$$

• If
$$\frac{(100\%)}{\sqrt{E/GeV}}$$
 $\rightarrow \delta p_n^{D-rest} \approx 100 \text{ MeV/c}$

HADRONIC CALORIMETRY II: EVAPORATION

- Evaporation neutrons
 - Thermal Distribution T ~ 10MeV (Nuclear Rest frame)
 - 95% within in angular cone 3mrad
 - HCal must separate shower profiles separated by ~7 cm to count neutrons.
- See also talks by M. Baker, F. Hauenstein

FAR-FORWARD HADRONIC CALORIMETER: TECHNOLOGY

• ZEUS: Depleted Uranium: $\frac{(35\%)}{\sqrt{E/GeV}}$

- High Segmentation e.g. FeSci sampling (longitudinal and transverse)
 - $\frac{(50\%)}{\sqrt{E/GeV}}$
 - < 1 cm transverse spatial resolution
 - Require 50cm lateral size beyond active area.
 - Wrap around Dipole 3? Wedge into space at 50 m between D & Q?
 - Some resolution-loss on beam side may be inevitable

9/25/19

FAR-FORWARD EM CALORIMETRY & GLUON SATURATION

- DVES as a signature for saturation
- Veto Incoherent by nuclear break-up
- What about Nuclear Bound states?
- Based on elastic ^AZ(e,e) ^AZ and inelastic ^AZ(e,e') ^AZ* data:
 - Expect even first diffractive minimum to be washed out by excitation diffraction: AZ(e,e' V) AZ* bound
 - VETO DECAY GAMMAs!

FORWARD EM CALORIMETRY

- Proposed signature for gluon saturation:
 - Comparison of low-x deep virtual exclusive J/Psi vs phi production.
 - Both are sensitive to gluon density, but with different spatial averaging: ϕ -production sensitive to saturation at larger x_B then J/Psi
- Signature is a shift in the diffractive minima
 - Inelastic production to bound excited states will wash-out the sharp diffractive minima and obscure the saturation signal
- Solution is to detect the gamma-decays to veto bound-state excitation

9/25/19

GAMMA-RAY VETO

- Requires doubly magic nucleus, e.g. ²⁰⁸Pb
 - Every gamma-cascade of ²⁰⁸Pb has least one photon above 2.6 MeV (in nuclear rest-frame).
 - Compare to Au, gamma decay chains with energies < 0.2 MeV

9/25/19

FORWARD γ BOOST/ ACCEPTANCE

- JLEIC: $P_A = Z (200 \text{ GeV/c}),$
 - $E_A / M_A \sim 80$
 - 50% of (2.6 MeV) photons are emitted in forward hemisphere of rest frame

with detector energy from 220 MeV to 440 MeV

- 50% of photons are in angular cone ± 1/80 = 12.5 mrad.
- ±10 mrad aperture would capture 42% of decay photons
- ±5 mrad aperture would capture only 15% of decay photons

FORWARD BOOST/ACCEPTANCE

- eRHIC: $P_A = Z (275 \text{ GeV/c}),$
 - $E_A / M_A \sim 116$
 - 50% of photons are in angular cone ± 8.5 mrad.

• ±4 mrad aperture captures 18% of decay photons

FAR-FORWARD EM CALORIMETRY

- PbWO₄
 - $X_0 = 8.9 \text{ mm}, r_M = 2.2 \text{ cm}, \tau = 25 \text{ nsec}$
 - 5% resolution at 300 MeV (https://arxiv.org/pdf/hep-ex/9907047.pdf)
- LYSO:
 - $X_0 = 11.4 \text{ mm}, r_M = 2.1 \text{ cm}, \tau = 40 \text{ nsec}$
 - SuperB prototype:
 NIM A 718 (2013) 10

$$rac{\sigma_E}{E} = rac{(1.1 \pm 0.5)\%}{\sqrt{E({
m GeV})}} \oplus rac{(0.37 \pm 0.15)\%}{E({
m GeV})} \oplus (1.2 \pm 0.7)\%$$

- 2.6% @ 300 MeV
- Both tolerant to fluence from 100 fb⁻¹ at IP $\leq 10^{13}$ neutron/cm²

QUARK-GLUON IMAGING OF ⁴He

- Highest Central Density of any nucleus
 - J=0, I=0
 - $\mathcal{H}_{g}(\xi, t | Q^{2}), \mathcal{H}_{a}(\xi, t | Q^{2}) = \mathcal{H}_{a}(\xi, t | Q^{2})$

⁴HE DVES : γ , ρ^0 , ϕ , ω , J/Ψ

- Diffractive minimum @ $|\Delta| \approx 0.64$ GeV/c
- ⁴He Beam: 400 GeV/c
 - $\sigma(p) \approx 0.6 \cdot 10^{-4} p = 240 \text{ MeV/c}$
 - $\sigma(p_{\perp}) \approx 0.3 \cdot 10^{-4} p = 120 \text{ MeV/c}$
 - 0° recoil nucleus detectable for
 - $x_A = x_{Bj}/A > 0.01$ (Dispersion = 1m) $\rightarrow x_{Bj} > 0.04$,
 - Raw resolution $\sigma(\Delta_I) \approx 120 \, MeV/c$ (improvable via over-complete kinematics)

CONCLUSIONS

- There is no separation between the accelerator and the detector
- The Interaction Region and Detector design process is a series of negotiations and re-negotiations.
- We can design and build an accelerator, interaction region and detector that fulfills our science ambitions.

C.Hyde 9/25/19 1:

Level

---- 0⁺ 0.00 MeV

3 2.615 MeV

ELASTIC VS INELASTIC SCATTERING

- Fourier-Bessel expansion of inleastic electron scattering from
 - J. Heisenberg et al, Phys Rev C v25 (1982) p.2292
- Inelastic (e,e') scattering on Pb to bound excited states.
- Deep Virtual excitation will not be identical, but will be similar

C.Hyde